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A New Method of Broad-Band Equalization
Applied to Microwave Amplifiers

HERBERT J. CARLIN, FELLOW, IEEE, AND JAMES J. KOMIAK, MEMBER, IEEE

Abstract—A new approach to broad-band matching which bypasses
analytic gain-bandwidth theory and directly utilizes measured real
frequency impedance data is applied to gain equalization and low-noise
design of GaAs Schottky-barrier FET amplifiers. Neither the equalizer
topology nor the analytic form of the system transfer function are initially
assumed. These result from the design process. Examples include an
octave-band FET amplifier design and a low-noise FET amplifier design.
The equalizers are realized with lumped elements or transmission-line
sections. A single basic least squares program implements the design
procedure.

I. Two-PoRrRT EQUALIZATION PROBLEM

NEW METHOD of broad-banding active one-ports
j such as passive loads and reflection amplifiers [3],
and active two-ports [1] leads to the design of an equaliza-
tion system to optimize gain or low-noise performance of
an amplifier. In this paper we consider the equalization of
microwave two-port amplifiers, particularly FET’s. The
method bypasses analytic gain-bandwidth theory [2] and
only requires real frequency impedance data (e.g.. experi-
mental) for the given active device to be equalized. The
given device is not approximated as an equivalent circuit,
and neither the equalizer topology nor the analytic form
of system transfer function is required. The equalization
can take into account: 1) the input and output mismatch
of the FET, 2) the variation of maximum available gain
over the band (this level is unrealizable physically but is
useful in setting performance limits), 3) the nonunilateral
behavior of the FET, and 4) stability considerations.

II. EQUALIZER DESIGN

A schematic diagram of the complete amplifier system
is shown in Fig. 1(b). The transducer gain T(w?) of the
system of Fig. 1(b) is given by (see Appendix A)

_ |S21(jw)|2(1 - |p1(jw)|2) . (1 - |p2(jw)|2) )
l_lsll(jw)lz 1_|Sz(jw)|2

Here, the §, (jw) are measured unit-normalized scattering
parameters of the FET. The function S,(jw) is the unit-
normaized back-end reflection factor of the FET with the
front-end equalizer in place, as shown in Fig. 1(a), given

T(w?)

(1)

Manuscript received March 13, 1978; revised July 20, 1978. This work
was supported under NSF Grant 75-10067ENG and Contract AF-
FA49620-77-C-0069. It is a portion of J. J. Komiak’s Ph.D. dissertation
submutted to Cornell University, Ithaca, NY, May 1978,

H. J. Carhn is with the School of Electrical Engineering, Cornell
University, Ithaca, NY 14853.

J. J. Komiak was with the School of Electrical Engineering, Cornell
Umversity, Ithaca, NY. He is now with IBM, Owego. NY 13827.

Y Y|
ql L1 SZ
o |
Q
Equalizer J L I
n (2) Sia
e te—S FET
g (1] s
, -~
!
| d
A
(a)
Yo %2
10
Lossless LJ Lossless I |
Equalizer (n (2) 1 Equalizer .
og FET 310
® - )
£ e & _I:_.
\ P
g L
zPL
(b)

Fig. 1. Schematic of amplifier system. (a) System with input equalizer.
(b) System with input and output equalizers.

by
S1(jw) Sy (jw) S, (Jw)
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where S ,(jw) is the unit-normalized reflection factor
looking in at port 2 of the front-end equalizer. The quan-
tity p,(jw) is the complex-normalized reflection factor (see
Appendix A, (3A)) between the admittances at port 1 of
the FET, when port 2 is terminated in unit resistance, as
shown in Fig. 1(a). Thus

S,(jw)= Sp(jw)+ (2)

4Gq1(w)GL1(W)
2 2
(G(@)+ G () +(B,i(w)+ Byy(w))

3)
with a similar expression in terms of impedances. The
relation at port 2 of the FET has the same form but
employs p,, the complex-normalized reflection factor at
port 2 of the FET with both equalizers in place and the
appropriate admittances as shown in Fig. 1(b).

Our problem is to determine Y,,(jw)= G, (w)+ /B, (w)
and Y,,(jw)= G (w)+jB,(w) to achieve a maximum flat
gain over the band. These two admittances completely
determine the equalizers.

l_lpl(.jw)]2=
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At the heart of the method is the representation of an
unknown conductance by a series of straight line seg-
ments [3], i.e., semi-infinite slopes, with “frequency break”
or slope discontinuity points at 0 <w, <w,**+ <w,. There
is a total of 7, mho of conductance change for the straight
line segment of G, between w,_; and w,. The r, are the
unknowns which as shown below specify the equalizer.
The w, break points can be chosen to divide the band
evenly or be distributed unevenly based on the behavior
of the real frequency load data. The choice of w, beyond
which the conductance and gain are zero depends upon
the rolloff (and hence equalizer complexity) desired.’
Bringing this final break point closer to the passband edge
results in higher order equalizers approaching the theoreti-
cal optimum gain-bandwidth limit.

Having chosen the frequency break points for the
straight line representation, the equalizer conductance at
any frequency is given as a linear combination of the
unknown individual conductance excursions 7, of each of
the line segments

(4)

where r, is the dc conductance and r7=(r,r,- - - r,). That
is, r is a column vector and r” is its transpose, a row
vector. The components g,(w) of the vector a(w) are
known in terms of the break points since G, is just a
connected sequence of straight line segments.

G (w)=ry+ > aq(w)r=ryta%(w)r
k=1

1, W, Sw
il 1 8 <w<

a (w)= P W, Sw<w. (5)
0, w<w,

The advantage of this representation is that the minimum
susceptance B,(w) corresponding to G, (w) is also a linear
combination of the same unknown conductance excur-
sions

B,(w)=b"(w)r. (6)

The components b,(w) of the vector B(w) are given in
terms of the break points

b (w)=

'y+co 7

-(—“"’k i’k—l)w'[»;\l ldy

This integral has a simple closed-form evaluation [4].
Note that alternately the actual values of G (w) at the

frequency break points may be used as the unknowns.

The defining equations for G, and B, remain linear, and

'A useful measure of complexity (segment number of equalizer ele-
ments if all zeros of transmission are at infinity) is one-half the degree
difference between numerator and denominator of the rational function
approximating the line segment characteristic. This number m can be
estimated by assuming stopband conductance rolloff proportional to
@~ 2" and choosing some realistic figure, say between 10 and 20 dB, for
the attenuation of conductance between passband edge frequency . and
“zero conductance point” w,. Thus, if we accept 13 dB down for the
conductance at w,=1.25 w,, then 2m log,o 1.25=13/10 and m=17.

the new coefficients are simple linear combinations of the
a, and b,.

Once the line segments describing G,(w) have been
determined, an appropriate rational approximation G ()
~G,(w) can be found by any convenient means (such as
approximating the line segments by a rational function
determined by least squares). The functional form of
G (w) will determine equalizer network topology, and
Y ,(Jw) as obtained [4] from G ,(w) can be realized as a
Darhngton reactance two-port (the equalizer) with a resis-
tive termination (the generator impedance).

The design process is implemented by first determining
the ideal straight line segment solution for G, (w) by
equalizing the first factor in (1) to a maximum flat gain
level. The approximation G, (w) to this straight line solu-
tion is then determined and then ¥, (@), Sy(jw) 1s calcu-
lated (2) with the front-end equahzer admittance )A’ql(w)
present. With the first factor known, a straight line seg-
ment solution for G,(w) is now determined by equalizing
the second factor of (1) to a maximum overall flat gain
level. An approximation G 2(w) to this line solution
followed by Y2( jw) defines the back-end equalizer and
completes the d651gn process. As a variant of the above
procedure, the equalization of |S,,(jw)[> may be distrib-
uted in any desired fashion between the first and second
factors of (1). This corresponds to compensating for
amplifier taper in either the input or output equalizers or a
combination thereof. For example, we may choose to
equalize gain variations of |S,;(Jw)| only in the first factor.
Then the second factor only provides impedance match-
ing. In this case the amplifier output is matched to the
line, and gain taper is compensated by the input equalizer,
or we may choose to match the input and compensate for
gain taper in the output equalizer.

It should be pointed out that the function (1) exactly
specifies the gain with the two equalizers in place. How-
ever, the design procedure can be iterated one or more
times in order to improve the maximum flat gain level. If
two successive iterations result in negligible change, the
procedure is terminated. In general, if [S,|<1 (..,
amplifier approximately unilateral), no iteration is neces-
sary. In this case, (2) indicates that S,(jw)= Sy,(jw).

Note that the numerical operations involved in de-
termining the straight line solution are well conditioned.
This is because: 1) the representation of G (w) and B (w)
are expressed as finear combinations of the real unknowns,
r,; 2) the gain is at most quadratically dependent on the
unknowns because of the form of the gain equation; and
3) the effect of line segments remote from the frequency
in question on B (w) is small. In essence, the straight line
approximation of the equalizer conductance or resistance
provides an idealized solution that can be obtained with a
single basic least squares numerical method applicable to
all loads and equalizers (see Appendix B). In many cases,
an interactive procedure utilizing APL or a programmable
calculator is sufficient to implement the computations.

Typically, the element values resulting from the synthe-
sis of the approximation to the line segment solution are
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practically realizable. This result arises from the flexibility
of the technique. We are not constrained to using a
particular form of transfer function or a particular
network topology. If, as a part of the approximation
process coefficients that are too large or coefficients of
similar magnitude but opposite sign result, we can discard
this approximation and readjust the coefficients by using
an approximation of a higher order of complexity. In this
manner, we can settle upon network element values as
well as a network topology of minimum complexity which
realizes the design goals.

ITI. ExaMPLE IA—OcTAVE-BAND GAIN
EQUALIZATION OF A GaAs SCHOTTKY-BARRIER FET
AMPLIFIER—MINIMUM SUSCEPTANCE CASE

In order to demonstrate the technique, consider gain
equalization of a Schottky-barrier FET across an octave
band. The straight line conductance solutions are ob-
tained by using a linear least square routine to minimize
the in-band deviation from a chosen gain level. That is,
we minimize

m T(wz) 2
= J —-—1 8
£= 2\ ) ®)

with respect to the unknown conductance excursions 7.
Here the objective function T(w?) is given by (1), and
To(w) is the chosen gain level at the frequency «,. Choos-
ing the level Ti(w)) to vary with frequency is equivalent to
introducing a known gain weighting function and permits
compensation for amplifier taper, which is included in the
factor §,,(jw))? in (1). Because of the form of the gain (1)
and the representation of G, (w) and B,(w) as linear combi-
nations of the unknowns, a linear least square routine can
be set up with a Jacobian which is simply expressed in
closed form. By employing more sophisticated numerical
techniques, such as constrained least squares or nonlinear
programming, constraints such as stability requirements
can be included in the technique. (See Appendix B for a
short discussion of the basic procedure.)

The numerically specified scattering parameters of the
NEC |-pm gate GaAs Schottky-barrier FET [5] as func-
tion of frequency were used for this example. The straight
line segment conductance solution and the rational ap-
proximation for the front-end equalizer are shown in Fig.
2(a). The straight line segment conductance solution and
the rational approximation for the back-end equalizer are
shown in Fig. 2(b). In both cases, the strajght line conduc-
tance solution was approximated by Gq(w)=[P5(a>2)]_1
where P¢(w?) is an appropriate even polynomial of degree
10. The resulting equalizer networks are five-element low-
pass LC ladders, whose element values were determined
using a Cauer continued-fraction expansion of Y, (jw),
obtained from G (w).

No iteration of the procedure was necessary in this case
because |S),| was sufficiently small. This equalized ampli-
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Fig. 2. (a) Front-equalizer conductance designed for NEC 1-pm gate
GaAs Schottky-barrier FET. (b) Back-equalizer conductance for this
FET: Gy qu—Line‘ segment equalizer conductance solution; G,
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Fig. 3. Compensated FET amplifier based on Fig. 2 and with low-pass
equalizers, (X denotes bias decoupling capacitor).
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Fig. 4. Gain response of equalized FET amplifier using @) bandpass
equalizers (8.53+0.72 dB), (with shunt L’s), and b) lowpass equalizers
(8.25+0.58 dB), (based on Fig. 2).

fier system is shown in Fig. 3. Note that seven slopes
suffice to describe these equalizers over a band of dc to 10
GHz. The equalized gain response of the FET amplifier
system was 8.25 =0.58 dB across the octave band of
4.0-8.0 GHz and is shown on Fig. 4 as dotted lines. The
maximum available gain of this transistor is also given for
comparison.
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Fig. 5. Equalized FET amplifier using shunting inductors for zero dc
gain, (X denotes bias decoupling capacitor): R, = R; =50 @; L,=6.54
nH, L,=425 nH, L;=3.48 nH, L,=1.58 nI—f C,=0.3456 pF, C,=
0.4309 pF; Ls=17.75 nH, Lg=727 nH, L,=5.60 nH, Ly=1.32 nH,
C3=0.1295 pF, C,=0.3084 pF (see Fig. 4a)).
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IV. EXAMPLE IB—INONMINIMUM SUSCEPTANCE
EQUALIZER

The previous discussion has dealt with Y (w) as mini-
mum susceptance (i.e., no poles of susceptance at any real
frequency, so that G () and B, (w) are uniquely related by
Hilbert transforms) and results in series inductances at the
FET ports of the equalizers. Permitting a shunt induc-
tance at the FET port of the equalizer [6] results in a
bandpass gain response with a dc gain of zero, but the
equalizer admittance Y, (jw) is now nonminimum suscep-
tance since it has a pole at dc. We handle this case by
resonating the shunt inductance L to the load at the lower
passband edge and then taking this circuit component
into account by including it as part of the load data (i.e.,
the revised load susceptance is B;(w)—1/(wL)). The re-
maining equalizer is then minimum susceptance, and the
original optimization procedure may be employed. Note
that if further refinement were required, the shunt L could
be optionally trimmed after the approximation to the
minimum susceptance equalizer was completed.?

By using a shunt inductance at the FET ports of the
equalizers followed by two five-element low-pass LC-
ladder networks (as shown in Fig. 5) a bandpass gain
response of 8.53 +0.72 dB results across the octave band
of 4.0-8.0 GHz (shown on Fig. 4 as a solid line). Again,
no iteration was necessary in this case since |S,| was
sufficiently small. In comparison to the low-pass solution
with a minimum gain of 7.66 dB, the bandpass solution
shows an improved minimum gain of 7.81 dB.

V. ExaMPLE II—GAIN EQUALIZATION AND
Low-NoOISE DESIGN OF A GaAs SCHOTTKY-BARRIER
FET AMPLIFIER USING TRANSMISSION-LINE
EQUALIZERS

The technique described here is not limited to gain
equalization as an objective function to be optimized
while satisfying gain-bandwidth restrictions. The objective
function may be gain, noise figure, noise measure, or any
other function that can be formulated in terms of imped-
ances or admittances.

The noise figure of an amplifier is dependent upon the
Thévenin impedance of an equalizer as seen from the

For this case we could also proceed by writing B (w)=bTr+
(—1/w)1/L and treat 1/L as an additional unknown.
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tional approximations to G,;, G, with @=tan wr.

input of the amplifier and is given by [7]
Fl6) = Fy(@)+ g/ [ (G(e) ~ G(0)’
W)= L\ W qu(w) [ gl w f @ )

+ (Bql(w) - Bf(“’))z} )
where F,

' a(®) is the minimum noise figure of the ampli-
fier, Y{(jw)= G{w)+/jBJw) is the source admittance pro-
ducing F,(w), and R; is a parameter. All of these are
measured properties of a particular FET. Consequently,
we can use (9) to determine Y,,(jw) (the front-end
equalizer) and employ the second factor of (1) to de-
termine Y,,(jw) (the back-end equalizer) for gain com-
pensation [8]. Note that, in general, the optimum source
admittance for noise figure is different from the source
admittance for maximum available gain. As a result, the
input equalizer designed for noise performance will reduce
the transducer gain of the transistor.

For this example, the equalizing networks were de-
signed by employing a cascade of commensurate trans-
mission lines and stubs of length L (delay=7=L/c,
c=3x%10% m/s) rather than lumped clements as in the
previous example. To accomplish this, the modified
Richards’ transformation [9]

Q=tan (wr) (10)

was employed as the frequency variable in the design
process. In the cascade connection, when this frequency
transformation is employed, driving-point network func-
tions are rational in the £ domain.

The scattering and noise parameters of the HP 1-um
gate GaAs Schottky-barrier FET [10] were used for this
example. The delay length 7 is chosen to give com-
mensurate lines that are A/4 in length at 1.5 times the
high-frequency limit of the passband.”> The straight line
conductance solutions were obtained in the {2 domain
(Fig. 6). They were then approximated by

(1+Q%)"

G@= an

where P, (Q?) is an even strictly positive polynomial of

3We cannot impose bandpass symmetry on the gain characteristic by
centering the A/4 point in the band; instead it must be chosen at some
convenient point above the high-frequency edge of the passband. This
defines the useful band which is perjodically repeated for the equalizer.
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Fig. 7. Noise_figure compensated FET amphfier configuration de-
signed from G, G, of Fig. 6 (X denotes bias decoupling capacitor).
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Fig. 8. Noise figure and gain of FET amplifier designed from éql, éqz
of Fig. 6.

degree 2m > 2n. Equation (11) is the prescribed form of a
rational conductance function in order to be realized by a
cascade of n commensurate transmission lines and m—n
commensurate stubs [9]. Both front and back equalizers
employ two transmission lines and two open-circuited
stubs as shown in Fig. 7. For this example, the delay
length r was chosen to make the commensurate lines A/4
in length at 18.0 GHz. Characteristic impedances were
determined by using a Richards’ extraction algorithm with
remainder truncation [11]. Fig. 8 shows the noise figure
and gain of the compensated amplifier. The amplifier
noise figure is 4.50+0.05 dB with an associated gain of
7.13x(.32 dB across the 8.0-12.0-GHz band.

VI. CONCLUSIONS

The real frequency technique described in this paper is
straightforward, yet it can be applied to a broad range of
practical examples. It handles complicated loads which
are too difficult for analytic procedures and may be
preferable even when analytic methods can be employed.
Furthermore, the technique processes measured real
frequency data without assuming analytic models, system
transfer function, or equalizer topology. The programming
can include constraints such as stability requirements.
Also, a single least squares program can be used for all
gain equalization problems. Finally, the technique permits
rapid convergence to a realizable physical design.

APPENDIX A
DERIVATION OF EQUALIZED TwoO-PORT GAIN
EQUATION

As given in the text (1) is a special form of the trans-
ducer gain equation for the equalized FET amplifier
which permits direct application of the design method

97

discussed in the paper. Thus this equation only involves
the measured S parameters (unit normalization) of the
FET, the port impedances of the FET (computable from
the S parameters) and the unknown port impedances of
the front and back equalizers seen from ports 1 and 2 of
the FET. These latter functions determine the equalizers.
The derivation is as follows. Consider Fig. 1(a) and
suppose the incident voltage (unit normalization) at port 1
of the FET to be a,. Then, the power transmitted across
port 1 of the FET is

Po=la,"(1=[S1,) (1A)
and the power to the 1-{ load terminating the FET in Fig.
I(a) 1s
Pl Sl
1-18 11|2
where the S are the unit-normalized S parameters of the

FET. But with p, the reflection factor at port 1 of the
FET, complex-normalized to Y,

Pl =|a\P’|S5|=

(2A)

2

YHR—-Y
2 gl L]
=| 3A)
|p1| qu+ YLI (
the power P, delivered to the FET is
P0=PA(1“|P1|2) (44)

where P, is the available power from the 1-Q generator e,.
Thus for Fig. 1(a),
T’( N Py _ (1~[p1|2)|S21|2
W)= —=——
Py =18y |2
Now refer to Fig. 1(b) and port 2 of the FET. Suppose
a’ to be the voltage wave variable incident on E, with
complex normalization to the FET admittance Y,,. The
power delivered to the FET port 2 load is then

Py=|a'(1=pl*)
where p is the load reflection factor complex-normalized
to the FET admittance Y;,. a’ is of course invariant to the
termination when the system to the left of port 2 is fixed.
Here p has no subscript since this equation is for any load.
Thus, if port 2 is terminated in 1 © (as in Fig. 1(a)), the
power P/ of (2A) is transmitted, and, in this case

2 2
[p|2=! Yh—1P |1-Y.,

=!9 2
Y,,+1 1+Y,, 15
where S, is just the 1-§ normalized port 2 reflection factor
of the FET with equalizer E, in place (2). Then the
transmitted power is

Py,=P/= |a/|2(1 - |Szlz)-

(54)

(6A)

(7A)

Finally. if the equalizer F, terminates the FET, we now

have the power delivered at port 2 of the FET and p=p,.
In this case

P,= |a'lz(1 - |P2!2) (8A)
where
YL—Y, |
2_ L2 qi_
e ‘———YM 7 94)
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From (7A) we find |a’|%, so that using P; from (2A) and
(4A) and substituting in (8A) we find P, with both
equalizers in place. Since E, is lossless, this is the same as

P,, the power to the final 1-Q termination of E,.
Thus

Pl = 1S (1=1e4f) P

- 1— |S11[2 :
and from (8A)
—p — (1—|p2I2)PL’
LR (-IsP)
so that finally we have (1) of the text:
( 2) (1 |P]l2)(1—|P2|2)|S21|2 (IOA)
P —- 2\(1 _ 2
4 (1 [S1] )(1 RYY )

As mentioned in the text, if the FET is unilateral, (S),=
0)S,=S,, in (10A).

APPENDIX B
LEAST SQUARES MATCHING

We show here how a simple Gauss—Newton least
squares routine can be applied to the matching problem.
In particular, it will be clear that a single program can be
used for all such problems independent of the complexity
of the load or equalizer.

The fundamental gain function to be optimized is gen-
erally of the form of (3) in the main text and may be
applied to reflection amplifiers or passive loads [3], or
two-ports as in (1). Thus for the discussion below let

4G, (@) Gy (w) |
(G,(0) + G (@)’ +(B,(w) + B (o))’
(1B)

Then define an error function as the fractional deviation
of #(w) from some specified gain function gy(w), which of
course may be constant.

1(r, ) — 8o(w)

Gain=#{w)=

tHr,w)

e(r,w)= @) =g(r,w)—1,g(r,w)= @)
(2B)
As in (4) and (6)
G,(rw)=ro+a'r (3B)
Bq(r, @) =b"r. (4B)

The function to be minimized over the passband by
appropriate choice of ris E=2 ez(r w). The w; are sam-
pling points for the error in the passband (we have used of
the order of 20 such points). Note that these sampling
points are not the wy, break points which define G (w). The
latter are relatively few in number.

Let r, be an initial guess for r. For example r, can be
chosen by assuming a conductance match to the load at
the frequency break points w,. For some initial choice rg,

qu("-’) EGq("o’ w) qu(w) EBq(rO* W) eplw)=e(ryw)
(5B)

and
r=ry+8, e(r,w)=eyw)+fT(w)d. (6B)
In (6B) the unknown increments with respect to the
initial guess r, are the components of the column vector

8=(8,,8,,-+-,8,)", and flw) is the gradient at r=r,
_ Oe(r.w) _ og(r, w)
Alw)= or, ory (7B)

The gradient vector flw) is simply expressed in explicit
algebraic form for all gain problems by (1B) and (7B).
Thus

f( )= ag(“’) a(o )+ ag(“’) b( ).

(8B)

We now obtair a set of linear algebraic equations in the
unknowns §, by setting

% ( g e*(r, w)) =0
The equations obtained by substituting (6B) into (9B) are
| S 8=~ e

The quantity >, ST is a sum of dyads, hence an nXn
matrix. It should be clear that (9B) and its solution for 8
can be programmed (as well as additional iterations) into
a standard form for all loads. We require as input the
given load data at the w, the initial guess r, at the
frequency break points w,, and the chosen gain values
8o(w). The method described is a Gauss—Newton proce-
dure but the basic ideas remain the same if more refined
methods such as the Levenberg—-Marquardt technique [12]
are used.

(9B)

(10B)
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A Generalized Multiplexer Theory

J. DAVID RHODES, MEMBER, IEEE, AND RALPH LEVY, FELLOW, IEEE

Abstract—A general direct analytical design process is presented for
multiplexers having any number of channels with arbitrary channel com-
plexity, bandwidths, and interchannel spacings. The theory assumes initi-
ally that independent doubly terminated designs are available for the
individual filters, and formulas for modifications to parameters associated
with the first two resonators are developed to match the multiplexer. These
formulas are approximate, and the limitations of the theory are indicated
with several computed examples. The theory is applied to the design of a
five-channel interdigital multiplexer.

A first-stage immittance compensation scheme is described which im-
proves the design for limiting cases, but the theory of complete immittance
compensation which handles even contiguous channel operation is reserved
for a companion paper.

I. INTRODUCTION

N TWO previous papers, direct design formulas were
presented for bandpass channel diplexers [1], [2]. In
this and a companion paper [3] the procedure is extended
to the general multiplexer case having any number of
channels, arbitrary channel complexity, and arbitrary
channel bandwidths and center frequency allocations.
The theory may be developed in two distinct phases. In
the first phase, to which this paper is devoted, design
formulas are derived for interacting channel filters having
direct connection (all in series or all in parallel) without
additional immittance compensation networks. This is an
important practical configuration and gives acceptable
results for a wide variety of common specifications, as
demonsirated by computer analysis and by experimental
results presented. The main limitation is that the channels
may not be spaced too closely in frequency.
In the second phase of the theory, consideration is
given to the design of immittance compensation networks.
Although a number of possible schemes for immittance
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compensation are feasible, it has been found possible to
design multiplexers on a manifold of uniform impedance
where the phase shifts between the various filters on the
manifold not only serve to separate the filters physically,
but also act as immittance compensation networks. The
results are expressed in the form of closed formulas, and
little or no computer optimization is required. This ex-
tended theory may be applied even to the limiting case of
contiguous band coverage and is the subject of the com-
panion paper [3].

Initial consideration has been given to the possibility of
designing multiplexers on the basis of exact synthesis, but
it has become apparent that this is possible only for
certain restrictive classes of networks. For example, in the
diplexer case, if two networks have input impedances Z
and 1 Z and are connected in series to a resistive gener-
ator of 1-& internal impedance, then there is a perfect
match at all frequencies at the input port. Power is distrib-
uted to the two networks as a function of frequency
according to the frequency variation of Re Z and 1—Re
Z. If there is perfect transmission in one channel at the set
of frequencies w=w,, then there must be infinite attenua-
tion in the other channel at w=cw,. Assuming that the set
of w, are chosen such that there is equiripple transmission
in the passbands, then, except for one very special case!,
the stopbands will not possess an equiripple behavior. In
this example, there is no frequency region where both
channels possess a common stopband. If they do, then the
return loss at the common port will be finite except at a
finite number of frequencies. This response may be made
exactly equiripple in an optimum manner over the two
individual passbands. However, the reflection at the indi-
vidual channel outputs will not, in general, be equiripple.
The only possible case in which this can be true is when

This occurs when the minimum return loss level 1n the passband is
approximately equal to the minimum msertion loss level in the stopband.
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