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A New Method of Broad-Band Equalization
Applied to Microwave Amplifiers

HERBERT J. CARLIN, FELLOW, IEEE, AND JAMES J. KOMIAK, MEMBER, IEEE

Abstract-A new approach to broad-band matching which bypasses

analytic gain-bandwidth theory and directly utifiies measured rest

frequency impedance data is apptied to gain equafiiation and low-noise

design of GaAs %hottky-barrier FET amplifiers. Neither the equalizer

topology nor the anatytic form of ttse system transfer frmetion are ioitially

assumed. These result from the design process. Examples inchsde an

odave-band FET arnpl~]er desigo and a low-noise FET amplifier design.

Tfne equafiiers are reafized with lumped elements or transmission-fine

sections. A single basic least squares program implements the design

prmedure,

I. TWO-PORT EQUALIZATION PROBLEM

A

NEW METHOD of broad-banding active one-ports

such as passive loads and reflection amplifiers [3],

and active two-ports [1] leads to the design of an equaliza-

tion system to optimize gain or low-noise performance of

an amplifier. In this paper we consider the equalization of

microwave two-port amplifiers, particularly FET’s. The

method bypasses analytic gain-bandwidth theory [2] and

only requires real frequency impedance data (e.g., experi-
menta~l for the given active device to be equalized. The

given device is not approximated as an equivalent circuit,

and neither the equalizer topology nor the analytic form

of system transfer function is required. The equalization

can take into account: 1) the input and output mismatch

of the FET, 2) the variation of maximum available gain

over the band (this level is unrealizable physically but is

useful in setting performance limits), 3) the nonunilateral

behavior of the FET, and 4) stability considerations.

II. EQUALIZER DESIGN

A schematic diagram of the complete amplifier system

is shown in Fig. l(b). The transducer gain T(ti2) of the

system of Fig. 1(b) is given by (see Appendix A)

~(@2)= 1.S2,(ju)12[l - Ip,(ju)l’) . (1 - lp2(jo)12) (1)

l–js,l(ja)l’ 1 – p2(jc.J)12 “

Here, the Sv(jo) are measured unit-normalized scattering

parameters of the FET. The function S2(jti) is the unit-

norma !ized back-end reflection factor of the FET with the

front-end equalizer in place, as shown in Fig. 1(a), given
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Fig. 1. Schematic of amplifier system. (a) System with input equalizer.
(b) System with input and output cquafizers.

by

where S (J’u) is the unit-normalized reflection f actor

looking ii at port 2 of the front-end equalizer. The quan-

tity pl(ja) is the complex-normalized reflection factor (see

Appendix A, (3A)) between the admittances at port 1 of

the FET, when port 2 is terminated in unit resistance, as

shown in Fig. l(a). Thus

4Gq,(u) GL,(ti)
——

‘ - ‘p’(Ja)’2 = (Gq,(ti) + G,,(ti))’+ (Bq,(@)+ %lb)):z

(3)

with a similar expression in terms of impedances. The

relation at port 2 of the FET has the same form but

employs p2, the complex-normalized reflection factor at

port 2 of the FET with both equalizers in place and the

appropriate admittances as shown in Fig. l(b).

Our problem is to determine
and Y~2(j~) = G~2(u) +jB~2(u) to

gain over the band. These two

determine the equalizers.

a;;hieve a ~laximum- flat

admittances completely

001 8-9480/79/0200-0093$00.75 01979 IEEE



94 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Mm-27, NO. 2, FEBRUARY 1979

At the heart of the method is the representation of an

unknown conductance by a series of straight line seg-

ments [3], i.e., semi-infinite slopes, with “frequency break”

or slope discontinuity points at 0< q <02. ” “ <U.. There

is a total of rk mho of conductance change for the straight

line segment of G~ between co~-.~ and CI+. The r~ are the

unknowns which as shown below specify the equalizer.

The a~ break points can be chosen to divide the band

evenly or be distributed unevenly based on the behavior

of the real frequency load data. The choice of ~. beyond

which the conductance and gain are zero depends upon

the rolloff (and hence equalizer complexity) desired. 1

Bringing this final break point closer to the passband edge

results in higher order equalizers approaching the theoreti-

cal optimum gain-bandwidth limit.
Having chosen the frequency break points for the

straight line representation, the equalizer conductance at

any frequency is given as a linear combination of the

unknown individual conductance excursions rk of each of

the line segments

G~(a)= rO+ ~ a~(ti)rk= ro-ta~(ti)r (4)
k=l

where rO is the dc conductance and rT = (r1r2” . “ r.). That

is, r is a column vector and r ~ is its transpose, a row

vector. The components ak(o) of the vector a(a) are

known in terms of the break points since G~ is just a

connected sequence of straight line segments.

[1, Ok<ti

[
o, cd<(d~.,

The advantage of this representation is that the minimum

susceptance l?~(ti) corresponding to G~(u) is also a linear

combination of the same unknown conductance excur-

sions

B~(~) = b ‘(a)r. (6)

The components bk(ti) of the vector b(o) are given in

terms of the break points

1

J
y+k)“kIn —bk(~)= &tik_*)T Q,-, @. (7)
y–w

This integral has a simple closed-form evaluation [4].
Note that alternately the actual values of Gg(ti) at the

frequency break points may be used as the unknowns.

The defining equations for G~ and Bq remain linear, and

‘A useful measure of complexity (segment number of equatizer ele-
ments if all zeros of transmission are at infinity) is one-half the degree
difference between numerator and denominator of the rationa 1 function
approximating the line segment characteristic. This number m can be
estimated by assuming stopband conductance rolloff proportional to
u- *m and choosing some realistic figure, say between 10 and 20 dB, for
the attenuation of conductancebetweenpassbandedgefrequency a= and
“zero conductance point” tin. Thus, if we accept 13 dB down for the
conductance at on= 1.250,, then 2m Ioglo 1.25= 13/10 and m =7.

the new coefficients are simple linear combinations of the

a~ and bk.

Once the line segments describing G~(u) have ~een

determined, an appropriate rational approximation Gg(o)

R G~(ti) can be found by any convenient means (such as

approximating the line segments by a rational function

d~termined by least squares). The functional form of

~~(~) will determine equaliz~r network topology, and

Y&ti) as obtained [4] from G~(ti) can be realized as a

Darlington reactance two-port (the equalizer) with a resis-

tive termination (the generator impedance).

The design process is implemented by first determining

the ideal straight line segment solution for G~l(a) by

equalizing the first factor in (1) to a maximum flat gain

level. The approximation G~l(u) toa this straight line solu-

tion is then determined and then Y~l(ja). S@) is calcul-

ated (2) with the front-end equahzer admittance Y~l(a)

present. With the first factor known, a straight line seg-

ment solution for G~z(ti) is now determined by equalizing

the second factor of (1) to ~ maximum overall flat gain

level. An approximation G~l(ti) to this line solution

followed by ~&u) defines the back-end equalizer and

completes the design process. As a variant of the above

procedure, the equalization of /Szl(jti)12 may be distrib-

uted in any desired fashion between the first and second

factors of (l). This corresponds to compensating for

amplifier taper in either the input or output equalizers or a

combination thereof. For example, we may choose to

equalize gain variations of ]S’zl(J”o) I only in the first factor.

Then the second factor only provides impedance match-

ing. In this case the amplifier output is matched to the

line, and gain taper is compensated by the input equalizer,

or we may choose to match the input and compensate for

gain taper in the output equalizer,

It should be pointed out that the function (1) exactly

specifies the gain with the two equalizers in place. How-

ever, the design procedure can be iterated one or more

times in order to improve the maximum flat gain level. If

two successive iterations result in negligible change, the

procedure is terminated. In general, if IS121z< 1 (i.e.,

amplifier approximately unilateral), no iteration is neces-

sary. In this case, (2) indicates that Sz(jti) = Szz(ju).

Note that the numerical operations involved in de-

termining the straight line solution are well conditioned.

This is because: 1) the representation of G~(u) and ll~(ti)

are expressed as linear combinations of the real unknowns,

rk; 2) the gain is at most quadratically dependent on the
unknowns because of the form of the gain equation; and

3) the effect of line segments remote from the frequency

in question on Bq(co) is small. In essence, the straight line

approximation of the equalizer conductance or resistance

provides an idealized solution that can be obtained with a

single basic least squares numerical method applicable to

all loads and equalizers (see Appendix B). In many cases,

an interactive procedure utilizing APL or a programmable

calculator is sufficient to implement the computations.

Typically, the element values resulting from the synthe-

sis of the approximation to the line segment solution are
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practically realizable. This result arises from the flexibility

of the technique. We are not constrained to using a

particular form of transfer function or a particular

network topology. If, as a part of the approximation

process coefficients that are too large or coefficients of

similar magnitude but opposite sign result, we can discard

this ap proximatiori and readjust the coefficients by using

an approximation of a higler order of complexity. In this

manner, we can settle upon network element values as
well as a network topology of minimum complexity

realizes the design goals.

which

111. EXAMPLE IA—OCTAVE-BAND GAIN

EQ7JALIZATION OF A GaAs SCIIOTTKY-BARRIER FET

AMPLIFIER—MINIMUM SUSCEPTANCE CASE

In order to demonstrate the technique, consider gain

equalization of a Schottky-barrier FET across an octave

bi~nd. The straight line conductance solutions are ob-

ta ined by using a linear least square routine to minimize

the in-band deviation from a chosen gain level. That is,

we minimize

[!“1 7’(kll)_ ~ 2
E=~ —

~=, To(q)
(8)

with respect to the unknown conductance excursions r~.

Here the objective function T(ti2) is given by (1), and

TO(U,) is the chosen gain level at the frequency o,. Choos-

ing the level TO(ti,) to vary with frequency is equivalent to

introducing a known gain weighting function and permits

compensation for amplifier taper, which is included in the

factor S2,(jti)12 in (l). Because of the form of the gain (1)

and the representation of G~(co) and ll~(co) as linear combi-

nations of the unknowns, a linear least square routine can

be set up with a Jacobian which is simply expressed in

closed form. By employing more sophisticated numerical

techniques, such as constrained least squares or nonlinear

programming, constraints such as stability requirements

can be included in the technique. (See Appendix B for a

short discussion of the basic procedure.)

The numerically specified scattering parameters of the

NEC I-pm gate GaAs Schottky-barrier FET [5] as func-

tion of frequency were used for this example. The straight

line segment conductance solution and the rational ap-

proximation for the front-end equalizer are shown in Fig.

2[a). The straight line segment conductance solution and

the rat ional approximation for the back-end equalizer are

shown in Fig. 2(b). In both cases, the straight line conduc-

tance solution was approximated by d,(u)= [P5(u2)]- 1

where P~(ti2) is an appropriate even polynomial of degree
10. The resulting equalizer networks are five-element low-

pass LC ladders, whose element values were determined

using a Cauer ~continued-fraction expansion of Y~(jti),

obtained from G~(u).

No iteration of the procedure was necessary in this case

because IS,21 was sufficiently small. This equalized ampli-
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Fig. 2. (a) Front-equalizer conductance designed for NEC l-pm gate
GaAs Schottky-barner FET. (b) Back-equalizer conductance for ~his

~ET: Gql~ Gq2—Line segment equalizer conductance solutiorl; Gql,
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Fig. 3. Compensated FET amplifier based on Fig. 2 and with low-pass
equalizers, (X denotes bias decoupling capacitor).
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Fig. 4. Gain response of equalized FET amplifier using a) bandpass
equalizers (8.53 *0.72 dB), (with shunt L’s), and b) lowpass equabzers
(8.25 ~ 0.58 dB), (based on Fig. 2).

fier system is shown in Fig. 3. Note that seven dopes
suffice to describe these equalizers over a band of dc to 10

GHz. The equalized gain response of the FET amplifier

system was 8.25 t 0.58 dB across the octave band of

4.0–8.0 GHz and is shown on Fig, 4 as dotted lines. The

maximum available gain of this transistor is also given for

comparison.
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L6 L, L8
NEC

FET
=C3 =C4 RL

r[

Fig. 5. Equatized FET amptifier using shunting inductors for zero dc
gain, (X denotes bias decoupling capacitor): R = R= = 50 Q; L,= 6.54
nH, L2 =4.25 nH, L3 = 3.48 nH, L4= 1.58 n~ C,= 0.3456 pF, C2=
0.4309 PF; L5 = 17.75 nH, L6=7.27 nH, ~= 5.60 nH, L8 = 1.32 nH,
Cq=0.1295 pF, C4=0.3084 pF (see Fig. 4a)).

IV. EXAMPLE lB—INONMINIMUM SUSCEPTANCE

EQUALIZER

The previous discussion has dealt with Y~(ti) as mini-

mum susceptance (i.e., no poles of susceptance at any real

frequency, so that G4(a) and ll~(ti) are uniquely related by

Hilbert transforms) and results in series inductances at the

FET ports of the equalizers. Permitting a shunt induc-

tance at the FET port of the equalizer [6] results in a

bandpass gain response with a dc gain of zero, but the

equalizer admittance Y@.J) is now nonminimum suscep-

tance since it has a pole at dc. We handle this case by

resonating the shunt inductance L to the load at the lower

passband edge and then taking this circuit component

into account by including it as part of the load data (i.e.,

the revised load susceptance is l?~(a) – 1/(oL)). The re-

maining equalizer is then minimum susceptance, and the

original optimization procedure may be employed. Note

that if further refinement were required, the shunt L could

be optionally trimmed after the approximation to the

minimum susceptance equalizer was completed.2

By using a shunt inductance at the FET ports of the

equalizers followed by two five-element low-pass LC-

ladder networks (as shown in Fig. 5) a bandpass gain

response of 8.53 f 0.72 dB results across the octave band

of 4.0–8.0 GHz (shown on Fig. 4 as a solid line). Again,

no iteration was necessary in this case since ISlal was

sufficiently small. In comparison to the low-pass solution

with a minimum gain of 7.66 dB, the bandpass solution

shows an improved minimum gain of 7.81 dB.

V. EXAMPLE II—GAIN EQUALIZATION AND

LOW-NOISE DESIGN OF A GaAs SCHOTTKY-BARRIER

FET AMPLIFIER USING TRANSMISSION-LINE

EQUALIZERS

The technique described here is not limited to gain

equalization as an objective function to be optimized

while satisfying gain-bandwidth restrictions. The objective

function may be gain, noise figure, noise measure, or any

other function that can be formulated in terms of imped-

ances or admittances.

The noise figure of an amplifier is dependent upon the

Thevenin impedance of an equalizer as seen from the

ZFor this case we could also proceed by writing B~(~) = b ‘r +

(– l/ti)l/L and treat l/L as an additional unknown.

15 r

313fi8- I 64i_16+ 353~4- 36i_12 + I

10

Gq2

5 -

,
0 20 Q(r= 0139 nmc)

U 12,7 12 !?5 f (GHz)

Fig. 6. Equalizer conductance for noise figure equalizati~n: Qql, Gqz
—front and back line segment equalizer conductance; Ggl, Gq2—ra-
tional approximations to Gql, Gq2with Q = tan wr.

input of the amplifier and is given by [7]

q(d) = Fm,n((o)+ * [(%1(”)- Gf@))2
ql

+ (~q,(@)–q(4)2] (9)
where F~ln(u) is the minimum noise figure of the ampli-

fier, Y~j~) = G~ti) +jlr’~ti) is the source admittance pro-

ducing Fmn(ti), and Rf is a parameter. All of these are
measured properties of a particular FET. Consequently,

we can use (9) to determine Y~l(ja) (the front-end

equalizer) and employ the second factor of (1) to de-

termine Yq2(jti) (the back-end equalizer) for gain com-

pensation [8]. Note that, in general, the optimum source

admittance for noise figure is different from the source

admittance for maximum available gain. As a result, the

input equalizer designed for noise performance will reduce

the transducer gain of the transistor.

For this example, the equalizing networks were de-

signed by employing a cascade of commensurate trans-

mission lines and stubs of length L (delay= ~ = L/c,

c = 3 X 108 m/s) rather than lumped elements as in the

previous example. To accomplish this, the modified

Richards’ transformation [9]

R= tan (ON) (10)

was employed as the frequency vaniable in the design

process. In the cascade connection, when this frequency

transformation is employed, driving-point network func-

tions are rational in the fl domain.
The scattering and noise parameters of the HP 1-pm

gate GaAs Schottky-barrier FET [10] were used for this

example. The delay length ~ is chosen to give com-

mensurate lines that are A/4 in length at 1.5 times the
high-frequency limit of the passband.’ The straight line

conductance solutions were obtained in the ~ domain

(Fig. 6). They were then approximated by

Gq(Q)= (1+‘2)”
Pm(LP)

(11)

where P~(Q2) is an even strictly positive polynomial of

‘We cannot impose bandpass symmetry on the gain characteristic by
centering the A/4 point in the band; instead it must be chosen at some
convenient point above the high-frequency edge of the passband. This
defines the useful band which is periodically repeated for the equalizer.
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Fig. 7. NoiseA fig~re compensated FET amphfier configuration de-
signed from Gql, Ggz of Fig. 6 (X denotes bias decoupling capacitor).
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Fig. 8. Noise figure and gain of FET amplifier designed from Ggl, Ggz
of Fig. 6.

degree 2m z 2n. Equation (11) is the prescribed form of a

rationa 1conductance function in order to be realized by a

cascade of n commensurate transmission lines and m – n

commensurate stubs [9]. Both front and back equalizers

employ two transmission lines and two open-circuited

stubs as shown in Fig. 7. For this example, the delay

length ‘r was chosen to make the commensurate lines A/4

in length at 18.0 GHz. Characteristic impedances were

determined by using a Richards’ extraction algorithm with

remainder truncation [11 ]. Fig. 8 shows the noise figure

and gain of the compensated amplifier. The amplifier

nc~ise f) gure is 4.50 f 0.05 dB with an associated gain of

7.13 t CI.32 dB across the 8.0– 12.O-GHZ band.

VI. CONCLUSIONS

The Peal frequency technique described in this paper is

straightforward, yet it can be applied to a broad range of

practical examples. It handles complicated loads which

are too difficult for analytic procedures and may be

preferable even when analytic methods can be employed.

Furthermore, the technique processes measured real

frequency data without assuming analytic models, system

transfer function, or equalizer topology. The programming

can include constraints such as stability requirements.

Also, a single least squares program can be used for all

gain equalization problems. Finally, the technique permits

rapid convergence to a realizable physical design.

APPENDIX A

I)ERIVATION OF EQUALIZED TWO-PORT GAIN

EQUATION

14s given in the text (1) is a special form of the trans-

ducer gain equation for the equalized FET amplifier
which permits direct application of the design method

discussed in the paper. Thus this equation only involves

the measured S parameters (unit normalization) off the

FET, the port impedances of the FET (computable from

the S parameters) and the unknown port impedances of

the front and back equalizers seen from ports 1 and 2 of

the FET. These latter functions determine the equalizers.

The derivation is as follows. Consider Fig. l(a) and

suppose the incident voltage (unit normalization) at port 1

of the FET to be a,. Then, the power transmitted across

port 1 of the FET is

Po=/al/2(1 –/S1i,12) (1A)

and the power to the 1-0 load terminating the FET in Fig.

l(a) is

POIS2112
P;=la, yls;, J=-—

1–1s,,12
(2A)

where the $~ are the unit-normalized S parameters of the

FET. But with p,, the reflection factor at port 1 of the

FET, complex-normalized to Y~l

Y;, – YL ] 2
IP,12= Yq, + YL;

(3A)

the power F’. delivered to the FET is

Po=PA(l–lp*l’) (4A)

where PA is the available power from the 1-L?generator eg.

Thus for Fig. l(a),

T’(J)= ; .Q+’&. (5A)
A

Now refer to Fig. l(b) and port 2. of the FET. Suppcme

a’ to be the voltage wave variable incident on E2 w Lth

complex normalization to the FET admittance Y~2. The

power delivered to the FET port 2 IIoad is then

P2= Ia’lz(l - ]pl’)

where p is the load reflection factor complex-normalized

to the FET admittance Y~z. a’ is of course invariant to the

termination when the system to the left of port 2 is fixed.

Here p has no subscript since this equation is for any load.

Thus, if port 2 is terminated in 1 Q (as in Fig. l(a)), the

power P; of (2A) is transmitted, and, in this case

Y:2–1 2
IP12= —

1 – YL2 2
—– =ls21’

YL2+ 1 = 1 + YL2
(6,4)

where S2 is just the 1-L?normalized port 2 reflection factor

of the FET with equalizer El in place (2)1. Then the

transmitted power is

P2=P~=la’12(1 –ls212). (7A)

Finally, if the equalizer E2 terminates the FET, we now

have the power delivered at port 2 of the FET and p G p2,
In this case

P2= la’[2(1 – lp2/2) (8A)

where

Y~2 – Yq2 2
IP212= YL2+ Y,,; .

(9A)
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From (7A) we find Ia’12, so that using P; from (2A) and

(4A) and substituting in (8A) we find P, with both

equalizers in place. Since E2 is lossless, this is the same as

P~, the power to the final l-fil termination of E2.

Thus

p,= Is,,y(l-lp,l’) p
L

l–IS1lI’ A

and from (8A)

p =P = (1-[p212)P:
L’

(1 -Is’y)

so that finally we have (1) of the text:

_ = ~(~,)= (1 -[p,l’)(1 -lp’/’)Is,,/’ . ~loA)PL

PA (1-[s,,f)(l-]s’l’)

As mentioned in the text, if the FET is unilateral, (S12 =

0)S2 = S22 in (1OA).

APPENDIX B

LEAST SQUARES MATCHING

We show here how a simple Gauss–Newton least

squares routine can be applied to the matching problem.

In particular, it will be clear that a single program can be

used for all such problems independent of the complexity

of the load or equalizer.

The fundamental gain function to be optimized is gen-

erally of the form of (3) in the main text and may be

applied to reflection amplifiers or passive loads [3], or

two-ports as in (1). Thus for the discussion below let

4Gq(u) GL(u)
Gain = t(u)=

(G,(Q) + GL(ti))2+ (B,(ti) + ll~(ti))’ “

(lB)

Then define an error function as the fractional deviation

of t(a) from some specified gain function gO(a), which of

course may be constant.

t(r, (d) – go(u) t(r, 0)
e(r, ti) = =g(r, ti)– l,g(r, ti)= —

go(~) ~o(~) <

(2B)

As in (4) and (6)

Gq(r, ti)=ro+a Tr (3B)

Bq(r, a)= b~r. (4B)

The function to be minimized over the passband by

appropriate choice of r is E = Zqe’(r, ~). The Uj are sam-

pling points for the error in the passband (we have used of

the order of 20 such points). Note that these sampling

points are not the ti~ break points which define G~(ti). The

latter are relatively few in number.

Let r. be an initial guess for r. For example r. can be

chosen by assuming a conductance match to the load at

the frequency break points Ok. For some initial choice ro,

G~O(@)~ G~(rO, CO) B~o(0) =Bq(ro, u) eo(~) =e(ro~)

(5B)

and

r= r. + & e(r, cd)= eo(co) +fT(ti)~. (6B)

In (6B) the unknown increments with respect to the

initial guess r. are the components of the column vector

a=(a,, a’,..., 8.)T, and j(u) is the gradient at r= r.

The gradient vector flu) is simply expressed

algebraic form for all gain problems by (lB)

Thus

(7B)

in explicit

and (7 B).

(8B)

We now obtair a set of linear algebraic equations in the

unknowns & by setting

(9B)

The equations obtained by substituting (6B) into (9B) are

1 U, J ~J

The quantity X@JT is a sum of dyads, hence an n X n

matrix. It should be clear that (9B) and its solution for 6

can be programmed (as well as additional iterations) into

a standard form for all loads. We require as input the

given load data at the co,, the initial guess r. at the

frequency break points Ok, and the chosen gain values

go(~,). The method described iS a Gauss–Newton PrOCe-
dure but the basic ideas remain the same if more refined

methods such as the Levenberg–Marquardt technique [ 12]

are used.

ACKNOWLEDGMENT

The authors acknowledge with thanks useful discus-

sions with Prof. W. Ku of Cornell University.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

H. J. Carlin, “A new method of broad-banding active 2-ports,” in
Proc. CAS Int. Symp. (Phoenix, AZ), Apr. 25-27, 1977.
D. C. Youla, “A new theory of broad-band matching;’ IEEE
Trans. Circuit Theoty, vol. CT-11, pp. 30-50, Mar. 1964.
H. J. Carlin, “A new approach to gain-bandwidth problems,”
IEEE Trans. Circuits Syst., vol. CAS-24, pp. 170– 175, Apr. 1977.
H. W. Bode, Network Ana~sis and Feedback Am@~ier Design.
Princeton, NJ: Van Nostrand, 1945, pp. 319.
J. A. Arden, “The design, performance, and application of the
NEC, NEC V244, and V388 gallium arsenide field effect transis-
tors,” Apphcation Note, Cahfornia Eastern Laboratories, June
1976.
H. J. Carhn and J. J. Komiak, “A new look at Broad-banding,” in
Proc. Asilomar Conf. on Cwcults, Syst. Comp. (Pacific Grove, CA),
Nov. 7-9, ~977, pp. 45–447.
R. S. Tucker, “Low-noise design of microwave transistor ampli-
fiers,” IEEE Trans. Mzcrowaoe Theory Tech.j vol. MTT-23, pp.
697-703, Aug. 1975.
J. J. Komiak and H. J. Carlin, “Real frequency design of broad-
band microwave amphflers,” in Proc. Cornell Active Microwave
Semiconductor Detvces and Circrats Conf. (Ithaca, NY), Aug. 16-
18, 1977, pp. 65-75.
H. J. Carlin, “Distributed circuit design with transmission line



IEEE TRANSACTIONS ON MICROWAVE THEORY ANO TECHNIQUES, VOL. MTT-27, NO. 2, FEBRUARY 1979 99

elements,” Proc. IEEE, vol. 59, pp. 1059-1081, July 1971. [11] J. J. Korniak and H. J. Carlin, “Improved accuracy for cc,m-
[ 10] C. A. Leichti and R. L. Tillman, “Desl~ and performance of mensurate line synthesis,” IEEE Trans. Microwaoe Theory Tech.,

rrucrowaveamplifiers with GaAs Schottky-gate field effect transis-
tors ,“

VOI MTT-24, pp. 212–215, Apr. 1976.
IEEE Trans. Microwave Theory Tech., vol. M’fT-22, pp. [12] C. L. Lawson and R. J. Hanson, Solving Least Square Problems.

510-517, May 1974. Englewood Cliffs, NJ: Prentice-HalI, 1’974.

A Generalized Multiplexer Theory

J. DAVID RHODES, MEMBER, IEEE, AND RALPH LEVY, FELLOW, IEEE

A bstrart-A generaf (fired anafytieaf design process is presented for

mrrltiplexms having any nornbcr of charnels with artitrary channel com-

plexity, bnrsdwfdtha, and intercharmel spacings. The theory assumes initi-

ally that independent doubly terminated designs are awilable for the

irtdiyiduai filters, and formulas for modifications to parameters associated

with the first two resonators are developed to match the multiplexer. These

formulas nre approximate, and the Iimitatioms of the theory are indfeated

with several computed examples. The theory is applied to the desigrr of a

fiye-chanoel interdigitaf mrsftiplexer.

.4. first-!Wge innnittanee compensation scheme is described which im-

proves the design for limiting eases, but the theory of complete irtrnrittance

cornpensa[ion which handles even contiguous channel operation is reserved

for a companion paper.

1. INTRODUCTION

I

N TWO previous papers, direct design formulas were

presented for bandpass channel diplexers [1], [2]. In

thi:i and a companion paper [3] the procedure is extended

to the /;eneral multiplexer case having any number of

channels, arbitrary channel complexity, and arbitrary

channel bandwidths and center frequency allocations.
The theory may be developed in two distinct phases. In

the firsl phase, to which this paper is devoted, design

formulas are derived for interacting channel filters having

direct connection (all in series or all in parallel) without

addition al immittance compensation networks. This is an

imports nt practical configuration and gives acceptable

results for a wide variety of common specifications, as

demonstrated by computer analysis and by experimental

results presented. The main limitation is that the channels

may nol be spaced too closely in frequency.

In the second phase of the theory, consideration is

given to the design of immittance compensation networks.

Although a number of possible schemes for irnmittance

Manuscript received April 4, 1978; rewsed July 24, 1978.
J. D. Rhodes is with the Department of Electrical and Electronic

Engineering, the University of Leeds, Leeds LS2 9JT, England.
R. LeW is with the Microwave Development Laboratories, Natick,

MA 01760.

compensation are feasible, it has been found possible to

design multiplexer on a manifold of uniform impedance

where the phase shifts between the various filters on the

manifold not only serve to separate the filters physically,

but also act as immittance compensation networks. The

results are expressed in the form of closed formulas, and

little or no computer optimization is required. This e~-

tended theory may be applied even to the limiting case of

contiguous band coverage and is the subject c~f the com-

panion paper [3].

Initial consideration has been given to the possibility of

designing multiplexer on the basis of exact synthesis, but

it has become apparent that this is possible only for

certain restrictive classes of networks. For example, in the

diplexer case, if two networks have input impedances Z

and 1 – Z and are connected in series to a resistive gener-

ator of 1-0 internal impedance, then there is a perfect

match at all frequencies at the input port. Power is dist rib-

uted to the two networks as a function of frequency

according to the frequency variation of Re Z and 1 – R.e

Z. If there is perfect transmission in one channel at the set

of frequencies a = O,, then there must be infinite atterma-

tion in the other channel at u= al. Assuming that the set

of u, are chosen such that there is eq,uiripple transmission

in the passbands, then, except for one very special cawel,

the stopbands will not possess an equiripple behavior. In

this example, there is no frequency region where both

channels possess a common stopband. If they do, then th~e

return loss at the common port will be finite except iat a

finite number of frequencies. This response may be madk

exactly equiripple in an optimum manner over the two

individual passbands. However, the reflection at the indi-

vidual channel outputs will not, in general, be equiripple.

The only possible case in which this can be true is when

‘This occurs when the minimum return loss level m the passband is
approximately equal to the minimum insertion loss level in the stopband.

001 8-9480/79/0200-0099$00.75 01979 IEEE


